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Abstract. The structure of the quantized enveloping algebra of the Lie superalgghral) is
studied, crystal bases for its negative part are constructed.

1. Introduction

In the application of quantized enveloping algebras of Lie algebras (or Lie superalgebras) to
two-dimensional solvable lattice models, the deformation paramegssentially plays the

role of temperature. Af = 0, which corresponds to absolute zero temperature, these algebras
possess certain canonical bases called crystal bases introduced by Kashiwara [Kas1]. Crystal
bases can be constructed for the quantized enveloping algebra of an arbitrary symmetrizable
Kac—Moody algebra [Kas?2]. Since crystal bases bear many remarkable properties (see [Kas1—
Kas4]), there have been recent attempts to extend crystal base theory to the superalgebra case
(see [BKK, MZ, Z1]).

In [Kas2], crystal bases for the negative gartof a quantized enveloping algeliravere
constructed. These crystal bases have the property that when they are applied to a highest-
weight vector of a simplé/-moduleV (of certain type), the non-vanishing elements form
a crystal base fov’. The construction uses the action of a reduced form of the quantized
enveloping algebra. Similar reduced forms can also be defined for the superalgebra case (for
the casel(m, n), see [Z1]). In this paper, we shall construct certain bases for the negative part
U~ of the quantized enveloping algelireof the Lie superalgebr& = si(m, 1). Since these
bases are crystal bases in the sense of [Kas2, 3.5] for the subalggl6ta) = U, (gl(m)),
whereGy is the even part of7, we shall also call them crystal bases. We first use the results on
the reduced versioR of U/ obtained in [Z1, Z2] to analyse the structur@of as aB-module,
then apply the result of [Kas2, 3.5] i, (Go) to construct these bases. The construction leads
to two types of bases, which will be called the upper case crystal base and lower case crystal
base, respectively.

In [BKK], a crystal base theory was developed for the Lie superalgghva, n) for
the category of modules obtained from the tensor products of the natural vector module of
gl(m, n). The crystal bases constructed in [BKK] are invariant under all Kashiwara operators
and behave well with respect to tensor products. Due to the fact that the category of finite-
dimensionalgl (m, n)-modules is not completely reducible, a canonical basé/fowhich is
invariant under all Kashiwara operators does not seem to be possible. Nevertheless, the result
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of the present paper shows that some naturally constructed bakesast actually crystal
bases for the subalgebtg (Go) of U/.

In section 2, we will recall the definition éf and its reduced forn8, and study some
basic properties d@ff. In sections 3 and 4 we will construct crystal basedfor

2. The algebral/ and its reduced form B

As a contragredient algebra, the Lie superalgefra= si(m,1) (m > 2) has then x m
defining matrix

Am—l

(aij)mxm = -1
-1 0

whereA,,_; isthe(m — 1) x (m — 1) Cartan matrix of typeA.

To define the quantized enveloping algelaraf G, letC be the field of complex numbers,
let ¢ be an indeterminate ovét, let A be the localization of the rin@[¢] atg = 0 and let
F = C(g). The algebra/ is an associativE,-graded algebra ovef (with 1) generated by;,
fi k(i =1, ..., m), with the grading given by deg) = deg f;) =0( =1,...,m — 1),
degkiﬂ) =0(¢=1,...,m),dede,) = ded f,,) = 1, and the defining relations

kik7 =k =1 kikj = kjk; 1<i,j<m (2.1)

kiejk;t = q“e; kifikit=q " f; 1<i,j<m (2.2)

eifj — (—1)%9D A 0 = 61»,’;"__ ;"‘_ 11 1<ij<m (2.3)
eiej =eje; if |i — j| > 1,andforli — j| =1,i #m,

eize‘,- — (q +q_l)e,-e‘,-e,- +ejei2 =0 (2.4)
fifi= fifiitli—jl>1andforli — j| =1,i # m,

ffi=(a+a ) fififi+ fif2=0 (2.5)

2 =0 fZ=o0. (2.6)

As in [Kas2, 1.4], we can define two comultiplications. onZ{. The comultiplication
A, is defined by

Ak =kt @k
Avle) =e; @1+k ®e 2.7)
A(f) = fi®kTT+1Q f; 1<i<m

and the comultiplicatiom\ _ is defined by
A_(KY) =P @kt
Ae)=e®k +1®e (2.8)
A(f)=/fi®l+tk® f; 1<i<m.

Corresponding ta\ ., the antipodes dff are defined by
Seki) =kt Siler) = —k; e S+ (f) = — fiki 1<i<m (2.9)
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and (compare with [Jan, 9.13])
S_ (k) =kt S_(e;) = —eik; S (fi)=—k*f: 1<i<m (2.10)

respectively.

We denote byU, (Go) the subalgebra dff generated bycl.il 1<i<m),e andf;
(1 <i <m-—1). SinceGo = gl(m) as a Lie algebral/,(Go) is the usual quantized
enveloping algebra gfl (m). We denote by~ (respectively/*) the subalgebra @f generated
by f; (respectivelye;), 1 < i < m, and denote by the subalgebra @ generated byciil,
1< i < m. Itis known that/ = U~UU*.

The reduced fornB of U/ is the Z,-graded associativé-algebra generated b/, f;
(1 < i < m) with grading given by deg = degf; = 0 (i # m), dege;, = degf,, = 1, and
generating relations

e f;i = (=1)*"q ™% fie} +8; a = dege] b = degf; 1<i j<m (211)
ey =eieif li—jl>1,andifli — jl=1,i #m

(ep)%e; — (g +q )ejeie] + €, (e))* =0 (2.12)
fifi=fifiifli—jl>1andifi —j|=1,i#m

fori—(a+a ) fififi+ fif2=0 (2.13)

€)?=0 f2=0. (2.14)

The following lemma is proved in [Z1, Z2].

Lemma 2.1. For any homogeneous elemente 1/~ of Z,-gradingb and anyl < i < m,
there are unique; andy; in &/~ such that

kiyi — yjkt
ey — (~D)ye; = -2 2 (2.15)
q9—9
wherea = dege;.
Thus we can define endomorphiseis Y~ — U=, 1< i < m, by
e/ (y) = kiyjk; " (2.16)

wherey; is given by lemma 2.1. If we also view, 1 < i < m, as endomorphisms of~,
thene; and f; satisfy the defining relations d.

Lemma 2.2. For anye; (considered as an endomorphisniof), we have
¢ (uiuz) = € (uuz + (=1 kurk; ‘e (u2) (2.17)

whereuy, u» € U~ are homogeneous elemenis= dege;), andb = degu1).

Proof. Use lemma 2.1 and the definition ¢t O

By using arguments similar to those in the proofs of lemmas 3.4.2 and 3.4.3 of [KasZ2],
we can prove the following lemma.

Lemma 2.3. The algebréd/(~ is a left 3-module and

U= B/irse;.
i=1
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We need to construct some root vectorg/ofAs in [Kacl, 2.5.4], we use linear functions
€ (1 <i < m)ands; to express the roots @ = s/(m, 1) and choose

i =€ — €1, 1<i <m—1; By = € — 81}
as a simple root system. Lt = ¢; — 81, 1 < i < m. Then the set of odd roots @f is
{£8;:1<i <m}. Let

m—1
Q*:Zaiaﬁamﬂm a; €{0,1,2,3,...} 1<i<m.
i=1

Then we have the usual weight subspaces decomposition
U =y u.
reQ-

Recall that for a quantized enveloping algebt& of a Lie superalgebra with
comultiplicationA and antipodes, the adjoint action is defined by

adyx(y) =Y _(—=1)%99%Days(b) (2.18)

wherex andy are homogeneous elementsibfand Ax = Xa ® b. It is easy to verify that
theC-linear map : U — U defined by

fe; = f; 0f = e; Ok; =kt 0g =qt (2.19)

andd (uv) = 0(v) O(u), u, v € U, is aC-algebra anti-automorphism of.

Now we use(A., S;+) and (A_, S_) to construct two sets of odd root vectors laf
respectively.

Define the following root vectors ¢f~:

fﬂm = fm
fons = et — fu-1fm
Jbue = qilfﬂmflfm—Z = fm—-2pns (2.20)

fﬂl = q_lfﬂzfl - flfﬁz'
Note that if we se@(fg,) = eg,, 1 < i < m, then we have
ep,, = qadgen—i(ep, ;) 1<i<m-1 (2.21)

with the adjoint action corresponding ta.+, S).
By using(A_, S-), we define a different set of negative odd root vectrs1 < i < m,
as the following:

f).‘;m = fm fﬁ;_l = adqu—l(fm) cee fﬁi = adqfl(ffg) (222)

Note that by definition,

fi = fifpu—afz fi  1<i<m-—1 (2.23)
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3. Lower case crystal base

We have the following lemma.
Lemma3.1.For1 < i <m — 1, we have

ei(fa fo, J5) =0 1<ip<ip<--<ig<m 1<k<m.
Proof. Sincee; commutes with 1, by the definition ef we havee;(1) = 0. By (2.3) and
(2.15) we have

) =28;  1<i j<m. (3.1)
We claim that

ei(fs) =0 1<i<m-1 1<j<m. (3.2)
In fact, by (2.3), (2.17) and (3.1) we hax/gfﬁ‘/) = 0forj > i, hence use (2.23), we have

e(fy) = €i(f) fa,, — aki [y ki tel(f)

— £ -1 -
_fﬂiﬂ_qq f,Bi+1

=0.
By using induction ork and (2.17), it is clear that (f, ) = 0, 0 < k < i, and therefore
(3.2) follows. Now (2.17) and (3.2) imply the desired result. a
Let
C= S S e LSk <m l<in<ip <o < i <m} ().

For1<i < m — 1, let f; andé; be the operators defined in [Kas2, 3.5] and let
B'(oo)={fy - fi -xixeX ,1<iy,....iy <m—1}.

Let fm = fum, ém = €,,. Let L_(co0) be theA-submodule of/~ spanned byB’(co) and let
B_(00) be the image oB’(co) in L_(c0)/qL_(00).

Theorem 3.2. The pair(L_(c0), B_(c0)) has the following properties:

(8) L_(o0) is a freeA-module and it generaté$— as a vector space OVer.

(b) L_(00) = ®rco-L_(00);, WhereL (00);, = L_(00) N U .

(c) &;L_(c0) € L_(oc0) forl < mandﬁL () CL_(0)forl<i<m—1

(d) B_(00) = U,cp-B_(00), isa baS|s of the vector spade (oo)/qL_(oo) overC, where
B_(00)3 = B_(00) N (L_(00);/qL_(00);).

(e) &;B_(oc0) C B (oo)U(O) forl<i mandf,B (00) € B_ (oo)U(O) forl<i <m-1

(f) Foranyl <i <m —1andb,b € B_(c0). b = &b’ < b’ = fib.

Proof. Except for the statements thgtL_(co) € L_(o0) ande,, B-_(00) € B_(o0) U (0),
all assertions follow from [Kas2, 3.5]. Note that f; = fié,, fori < m, so itis clear that we
only need to check (recall thag, - 1 = 0)

en(f5, 1, fa) 1<ip<ip<-<ix<m 1<k<m.
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We use induction ok, first considerém(ff;). Fori = m, en(fg) = 1. We claim that
em(fg) =0fori <m. Infact,ifi =m — 1, by (2.17) and (3.1) we have

en(f5,) = en(fs)
= e, (fn-1Sm = @fnfn-1)
= €, (fu-1) fn + afm-16, (i) = a (€ (fr) frn-1 = fnesy (fin-1))
=0.
Assuminge, (f5) = 0, then again by (2.17) and (3.1) we have
en(fo.) = en(fieafy — afy fi-1) =0,
Hence by (2.17) and induction dn

0 ir <m
ém(ftglfﬁ; e f,gf.k) = (_1)k—1qk—1ff;lfﬂ; e fa iy = m.
Therefore,
en(fp, Ip, fo,) € L-(00)
and
&n(fg, fp, < fg,) =0 (ModgL_(c0))
which proves the statements abéyt O

Remark. Sincefy, fu1=aq *fu_1fm —q 1 fp, 1, fu(L_(00)) is notincluded inL_(co).

4. Upper case crystal base

Similar to the proof of lemma 3.1 we can prove the following lemma.
Lemma4.l.For1 <i < m — 1, we have
el’-(f,gilf,g,.2~of,9,.k) =0 1<ig<izc<---<ip<m 1<k <m.
Let
X={fp, fp, o, 1<ii<iz<---<i gm,lgkgm}U{l}
let ;, & (1 < i < m) be the operators defined in section 3 and let
B'(c0) ={fi,- fi, x 1 x e X, 1<y, ....iy <m—1}.

Let L(c0) be the4-submodule of/~ spanned bys” (co) and letB(co) be the image oB” (co)
in L(c0)/qL(00).

Theorem 4.2. The pair(L(oc0), B(c0)) has the following properties:

(a) L(oc0) is a freeA-module and it generatég~ as a vector space over.
(b) L(00) = Djeo-L(00);, whereL(o00); = L(co) NU, .
(c) fiL(o0) € L(oo) forl<i <mande;L(oco) C L(oo)forl<i <m—1.
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(d) B(c0) = Useg-B(0), is a basis of the vector spade(oo)/qL(oco) over C, where
B(00); = B(00) N (L(00),/qL(0)5).

(€) fiB(c0) S B(o0) U (0) for 1 < i < m andé; B(co) € B(oo) U (0) for 1 <i <m — 1.

(f) Foranyl <i <m—1andb,b’ € B_(c0),b=¢;b' & b = fib.

It is clear that we only need to prov&, L(co) € L(co) and f,, B(co) € B(oo) U (0). In
order to do that, we need some commutation formulae which we will state as lemmas.

Lemmad4.3.Fori < m, f, fs, = —qfp fm-

Proof. We leti = m — k, and use induction ok. Fork = 1, usef?2 = 0, we have
FonFns = Fu(@  fonfuet = fu-tfn) = — i fn—1fm
= —4(q" fufn-1 = fn-rf) S = =4S 1 fon-
Assume the formula is true fér> 1, sincef,, fn—x—1 = fin—k—1fm, We have
oS = Jn @ Fps ot = fmk1.fp,0)
= =SB Sm—k=1Sm ¥ qfm-k=1S, s fm

= _Qfﬁm—(kﬂ) Jmn-
Thus the lemma follows. O

Lemma 4.3 impliesthatfor X i; <io < -+ < iy < m,

.ﬁn.fﬂ;l fﬁfz e fﬁik = (_1)qufﬂ/1 fﬁfz e fﬁ[k S (4.1)
Lemma4.4.ForO0<i <m — 1, we have
fnf—i—lfﬁmﬂ’ - (q + q_l)f;n—i—lfﬂm,,' fm—i—l + fﬁmﬂ’ frrzl—i—l =0. (42)

Proof. Fori = 0, the formula is just one of the defining relatioriaf Fori > 0, we have
FricaSpus = fomicala™ fpumsafmi = fmi fons)
=4 fpidmiafni = S i afoi i
=4 fpa((@ @) Fomicfni i = foni i)
—((g+q™Y) fumicafmei fnmict — i F2—i 1) Foinn
=q g +qY) fumiafp i fnmi fmict — @ fay s i f—i1
— (@ +q ) fumict fnmi fop s it ¥ Fmi o i foia

= (q+q ) fui-afpi it = S Firica-
Thus (4.2) follows. O

Formula (4.2) implies
Jm—i [ = QS i f—i 0<i<m—-1 4.3)
Lemma4.5.For0<i <m — 1, we have

fi., =0 (4.4)
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Proof. We use induction ot. The casé = 0 follows from (2.6). Assumg‘ﬁ =0, thena
simple computation shows

fﬁmﬂ' fﬂ/u—i—l = _qf/sm—i—l fﬂm—[ N (4'5)
Thus

fﬂzmi,-il = (q_lfﬂm—i fm*ifl - fm*l‘*lfﬁmfi)fﬂmfi—l
= _Qfﬂm_i—lfﬁm_i fmfifl + quﬁm_i—lfmfiflfﬁm—i
(by (4.3), (4.5))
- _quﬁzm—i—l'
Therefore, by our assumption gnthe desired formula follows. O
Lemma4.6.For0<i < j <m — 1, we have
fﬂm—, fﬂm*i = _qfﬁm*.f fﬂm—i . (46)
Proof. Note that the case= 0 is justlemma 4.3, and by (4.5) the formulais truefoe i + 1.

Assume itis true foj = i + k with k > 1. Then sincefg, , fu—i—k-1 = fn—i—k—-1f8,.» We
have

fﬂm—i fﬂm—i—k—l = fﬁm—i (q_lfﬂm—i_k fmfifkfl - fmfifkflfﬁm—i—k)
= —q(q¢ " fpn i Smiotot = omik=1 S i2) S
= _qfﬁm—i—k—lfﬁm—i'
Hence the desired formula follows. d
Lemma4.7.For0 <i <m — 1, we have
FowsFica = P fua + d Fo i fp (4.7)
Wheref(k) STk
Proof. We use induction ok. We distinguish between two casés= 0 andi > 0. The case
wherei = 0 is straightforward, we give the proof for the case whete 0. Fork = 1, the

desired formula follows from the definition g%, . , (see (2.20)). Assume the formula holds
fork —1, then

fﬁm Ifn('lk)l 1= [k] flgm xfn(lk ll)lfm i-1

1

[k]( f(k Z)lfﬁm i-1 k 1f(k 1)lf/3m ,)fm i-1

1 w2 1 i1 -

= m mfiflfm—i—lfﬁm—:—l + mq fmfifl(qfﬁmf;q + qu_i_lfﬂmf[)

(by (4.3))

1

[k] (f(k 2)1fm i— l -fn(lk ll)l)fﬁm—[—l +qkf‘ﬂ(lkf)[71fﬂm—i

[k]([k 1 +q ) (k l) fﬁm/1+q f Zic1S B

k—1
= af S fp L S
and the formula foIIows. O
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Lemma4.8.For0<i,j <m — 1, we have

Jn=j FBs j#FI i+l
Fonifuej =3 @ fuifp j=i (4.8)
q-fﬂmff*l + qu*iflfﬁm—i ] =i+1.

Proof. The casej = i is just (4.3), and the case= i + 1 follows from (2.20), so we only
need to prove the cage#i,i + 1.

Assumej # i,i + 1. The formula clearly holds if > i. To treat the casg < i, we let
j =i — k and use induction oh. Fork = 1, we have

fﬂm—i fm—i+1 = (qilfﬁm—Hlfm—i - ﬁn—ifﬂlr1—i+1) fm—i+1
= q_l(q_lfﬂmf;»fzfm—ﬁl - fm—i+1fﬁm7,’+z) Jm—i fm—i+1 — fn—i [pp_ioa Jn—i+1
= qizfﬂmfnzfm—ﬁlfm—i fm—i+l - qilfm—i+lf/3,,,7,'+zfm—i ﬁn—i+l

= fumi fneiv1 B (by (4.3)).
The first term at the last step is equal to

-2
q 2 5
g+qgt Sbu-ivz (fm—i+1fm—i + fini fm—i+1)
-2
- qt q_l (qfﬂm_iﬂ * qu7i+lf/3m—i+2) fmfi+lfm7i
-2
+q + qil (Qfﬁm—iﬂ + Qfm7i+lfﬂ,,,,,-+2)fm,i+1
q—2
= g+ q*l fm*i+lfﬁm4+1fm7i
1
+q + q_l fmiHl(fﬂ”"”“ + fm*"*’lfﬁm—wz)fmfi
q—2
+q + q*l fmii fM7i+lfﬂm,i+1

1
+W Son—i it (fpros ¥ n-i+1S B0 112

= .ﬁn—i*’l(fﬁmf[ + fm—ifﬂm—iﬂ) +

2
e m—i+1Sm=i fBu s

1
-1 2
+q ™" fn—i fn—i+1S B T mfm—ifm_ﬁlfﬂm—ﬁz

and the second term is equal to
_fm7i+lf;n7i (fﬁmfiﬂ_ + fm7i+lf}3m—i+z)
= _fm—i+1fm—i fﬂm,,-ﬂ - f;n—i+lfm—i fm—i+1ff3m4+z

hence

S S—it1 = fm—i+1.Si-
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Suppose the desired formula holds for 1 > 1, then by what we have proved,
Soues Fnik = (@ s fni = i Fhsea) i
= foeine (@ fpy s Sonei = Fnei Fnin)
el [

so the lemma follows. O

Proof of theorem 4.2To prove f,, L(c0) € L(oo) and f,, B(co) € B(co) U (0), we consider
a typical element of the form

ﬁl"'ﬁ,-fﬂji"‘fﬁ,.\. .1
and use induction on. Forr = 0, formula (4.1) implies that

fufs, - fs, 1€ L(co)
and

Fufs, - fp, -1=0 (mod ¢ L(c0)).

Consider the case = 1. If f,-l #+ fm_}, then sincef,, commutes withf;,, by the above
arguments the desired result follows.flf = f.,—1, then by (4.8), we have

fmfmflfﬁjl e fﬂjx 1= (Qfﬁm_l +Qf7mflfm)fﬁj1 T fﬂjr -1
and by (4.6) we have the desired result. So let us assume that

Fufis- Jip £, - f5,, - 1 € B(0o0) U (0) (4.9)
and

4" foofis fo S, f3, - 1 € B(oo) U (0) (4.10)
wherek; # m —i. The assumptiok; # m — i is based on the fact thg}, . commutes with
fm—j for j > i +1 and the following formula (see formula (1) on p 253 in [Jan])

[ = a F 1+ 157 (fifon = afinnfi) (4.11)
fori <m — 1.

Now consider

fmﬁ1 T ﬁr-+1fﬂj1 o fﬁj,\- -1

Then sincef,, commutes Withfm_k for k > 1, we can assume that= m — 1. By formula
(4.7), we can further assume thiatz m — 1. Since

ﬁnﬁl T ﬁrﬂfﬂ/l T fﬁjA 1= (Qfﬂm71 +('I];m—1fm)ﬁ2 T f;,ﬂfﬂjl o fﬂ/s -1
by our induction assumption (4.10), it is clear that we only need to consider
Qfmﬁz"'ﬁrﬂfﬁ/l'”fﬁh 1

and assume thap = m — 2 # i3 by reasons similar to those in the discussion before.
Proceeding similarly, we reduce our case to the term

qm_lfﬁlfim c ﬁr*—lfﬂjl T fﬁfx -1

Since formula (4.11) allows us to assuipe# 1, by (4.8), 13, fi, = fi, fs, thus by induction
assumption (4.10) the induction process goes through and the proof of theorem 4.2 has been
completed. |
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5. Discussion

We used the reduced form of the quantized enveloping algélofaG = si(m, 1) to analyse

the structure of{. Our result shows that some naturally constructed baség fare crystal

bases for the subalgebra@fcorresponding to the even part Gfin the sense of [Kas1]. In

[Z2], these bases were shown to have the property that when applied to a highest-weight vector
of a simple module (of certain type), the non-vanishing ones form a crystal base for the module
(for the subalgebra corresponds to the even pai)oh the case of/(2, 1). Further attention
should be given for the general cases.
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