On the structure of $U_{q}(s /(m, 1))$: crystal bases

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 328197
(http://iopscience.iop.org/0305-4470/32/46/315)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.111
The article was downloaded on 02/06/2010 at 07:50

Please note that terms and conditions apply.

On the structure of $U_{q}(s l(m, 1))$: crystal bases

Yi Ming Zou
Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
E-mail: ymzou@uwm.edu

Received 14 December 1999, in final form 4 August 1999

Abstract

The structure of the quantized enveloping algebra of the Lie superalgebra $\operatorname{sl}(m, 1)$ is studied, crystal bases for its negative part are constructed.

1. Introduction

In the application of quantized enveloping algebras of Lie algebras (or Lie superalgebras) to two-dimensional solvable lattice models, the deformation parameter q essentially plays the role of temperature. At $q=0$, which corresponds to absolute zero temperature, these algebras possess certain canonical bases called crystal bases introduced by Kashiwara [Kas1]. Crystal bases can be constructed for the quantized enveloping algebra of an arbitrary symmetrizable Kac-Moody algebra [Kas2]. Since crystal bases bear many remarkable properties (see [Kas1Kas4]), there have been recent attempts to extend crystal base theory to the superalgebra case (see [BKK, MZ, Z1]).

In [Kas2], crystal bases for the negative part \mathcal{U}^{-}of a quantized enveloping algebra \mathcal{U} were constructed. These crystal bases have the property that when they are applied to a highestweight vector of a simple \mathcal{U}-module V (of certain type), the non-vanishing elements form a crystal base for V. The construction uses the action of a reduced form of the quantized enveloping algebra. Similar reduced forms can also be defined for the superalgebra case (for the case $s l(m, n)$, see [Z1]). In this paper, we shall construct certain bases for the negative part \mathcal{U}^{-}of the quantized enveloping algebra \mathcal{U} of the Lie superalgebra $G=\operatorname{sl}(m, 1)$. Since these bases are crystal bases in the sense of [Kas2, 3.5] for the subalgebra $U_{q}\left(G_{0}\right) \cong U_{q}(g l(m))$, where G_{0} is the even part of G, we shall also call them crystal bases. We first use the results on the reduced version \mathcal{B} of \mathcal{U} obtained in $[\mathrm{Z} 1, \mathrm{Z} 2]$ to analyse the structure of \mathcal{U}^{-}as a \mathcal{B}-module, then apply the result of [Kas2, 3.5] to $U_{q}\left(G_{0}\right)$ to construct these bases. The construction leads to two types of bases, which will be called the upper case crystal base and lower case crystal base, respectively.

In [BKK], a crystal base theory was developed for the Lie superalgebra $g l(m, n)$ for the category of modules obtained from the tensor products of the natural vector module of $g l(m, n)$. The crystal bases constructed in [BKK] are invariant under all Kashiwara operators and behave well with respect to tensor products. Due to the fact that the category of finitedimensional $g l(m, n)$-modules is not completely reducible, a canonical base for \mathcal{U}^{-}which is invariant under all Kashiwara operators does not seem to be possible. Nevertheless, the result
of the present paper shows that some naturally constructed bases of \mathcal{U}^{-}are actually crystal bases for the subalgebra $U_{q}\left(G_{0}\right)$ of \mathcal{U}.

In section 2 , we will recall the definition of \mathcal{U} and its reduced form \mathcal{B}, and study some basic properties of \mathcal{U}. In sections 3 and 4 we will construct crystal bases for \mathcal{U}^{-}.

2. The algebra \mathcal{U} and its reduced form \mathcal{B}

As a contragredient algebra, the Lie superalgebra $G=\operatorname{sl}(m, 1)(m \geqslant 2)$ has the $m \times m$ defining matrix

$$
\left(a_{i j}\right)_{m \times m}=\left(\begin{array}{ccc}
A_{m-1} & & \\
& & -1 \\
& -1 & 0
\end{array}\right)
$$

where A_{m-1} is the $(m-1) \times(m-1)$ Cartan matrix of type \boldsymbol{A}.
To define the quantized enveloping algebra \mathcal{U} of G, let \mathbb{C} be the field of complex numbers, let q be an indeterminate over \mathbb{C}, let \mathcal{A} be the localization of the ring $\mathbb{C}[q]$ at $q=0$ and let $\mathcal{F}=\mathbb{C}(q)$. The algebra \mathcal{U} is an associative \mathbb{Z}_{2}-graded algebra over \mathcal{F} (with 1) generated by e_{i}, $f_{i}, k_{i}^{ \pm 1}(i=1, \ldots, m)$, with the grading given by $\operatorname{deg}\left(e_{i}\right)=\operatorname{deg}\left(f_{i}\right)=0(i=1, \ldots, m-1)$, $\operatorname{deg}\left(k_{i}^{ \pm 1}\right)=0(i=1, \ldots, m), \operatorname{deg}\left(e_{m}\right)=\operatorname{deg}\left(f_{m}\right)=1$, and the defining relations

$$
\begin{array}{lll}
k_{i} k_{i}^{-1}=k_{i}^{-1} k_{i}=1 & k_{i} k_{j}=k_{j} k_{i} & 1 \leqslant i, j \leqslant m \\
k_{i} e_{j} k_{i}^{-1}=q^{a_{i j}} e_{j} & k_{i} f_{j} k_{i}^{-1}=q^{-a_{i j}} f_{j} & 1 \leqslant i, j \leqslant m \\
e_{i} f_{j}-(-1)^{\operatorname{deg}\left(e_{i}\right) \operatorname{deg}\left(f_{j}\right)} f_{j} e_{i}=\delta_{i j} \frac{k_{i}-k_{i}^{-1}}{q-q^{-1}} & 1 \leqslant i, j \leqslant m \tag{2.3}
\end{array}
$$

$e_{i} e_{j}=e_{j} e_{i}$ if $|i-j|>1$, and for $|i-j|=1, i \neq m$,

$$
\begin{equation*}
e_{i}^{2} e_{j}-\left(q+q^{-1}\right) e_{i} e_{j} e_{i}+e_{j} e_{i}^{2}=0 \tag{2.4}
\end{equation*}
$$

$f_{i} f_{j}=f_{j} f_{i}$ if $|i-j|>1$, and for $|i-j|=1, i \neq m$,

$$
\begin{align*}
& f_{i}^{2} f_{j}-\left(q+q^{-1}\right) f_{i} f_{j} f_{i}+f_{j} f_{i}^{2}=0 \tag{2.5}\\
& e_{m}^{2}=0 \quad f_{m}^{2}=0 . \tag{2.6}
\end{align*}
$$

As in [Kas2, 1.4], we can define two comultiplications $\Delta_{ \pm}$on \mathcal{U}. The comultiplication Δ_{+}is defined by

$$
\begin{align*}
& \Delta_{+}\left(k_{i}^{ \pm 1}\right)=k_{i}^{ \pm 1} \otimes k_{i}^{ \pm 1} \\
& \Delta_{+}\left(e_{i}\right)=e_{i} \otimes 1+k_{i} \otimes e_{i} \tag{2.7}\\
& \Delta_{+}\left(f_{i}\right)=f_{i} \otimes k_{i}^{-1}+1 \otimes f_{i} \quad 1 \leqslant i \leqslant m
\end{align*}
$$

and the comultiplication Δ_{-}is defined by

$$
\begin{align*}
& \Delta_{-}\left(k_{i}^{ \pm 1}\right)=k_{i}^{ \pm 1} \otimes k_{i}^{ \pm 1} \\
& \Delta_{-}\left(e_{i}\right)=e_{i} \otimes k_{i}^{-1}+1 \otimes e_{i} \tag{2.8}\\
& \Delta_{-}\left(f_{i}\right)=f_{i} \otimes 1+k_{i} \otimes f_{i} \quad 1 \leqslant i \leqslant m
\end{align*}
$$

Corresponding to $\Delta_{ \pm}$, the antipodes of \mathcal{U} are defined by

$$
\begin{equation*}
S_{+}\left(k_{i}\right)=k_{i}^{-1} \quad S_{+}\left(e_{i}\right)=-k_{i}^{-1} e_{i} \quad S_{+}\left(f_{i}\right)=-f_{i} k_{i} \quad 1 \leqslant i \leqslant m \tag{2.9}
\end{equation*}
$$

and (compare with [Jan, 9.13])
$S_{-}\left(k_{i}\right)=k_{i}^{-1}$
$S_{-}\left(e_{i}\right)=-e_{i} k_{i}$
$S_{-}\left(f_{i}\right)=-k_{i}^{-1} f_{i} \quad 1 \leqslant i \leqslant m$
respectively.
We denote by $U_{q}\left(G_{0}\right)$ the subalgebra of \mathcal{U} generated by $k_{i}^{ \pm 1}(1 \leqslant i \leqslant m), e_{i}$ and f_{i} $(1 \leqslant i \leqslant m-1)$. Since $G_{0} \cong g l(m)$ as a Lie algebra, $U_{q}\left(G_{0}\right)$ is the usual quantized enveloping algebra of $g l(m)$. We denote by \mathcal{U}^{-}(respectively \mathcal{U}^{+}) the subalgebra of \mathcal{U} generated by f_{i} (respectively e_{i}), $1 \leqslant i \leqslant m$, and denote by \mathcal{U}^{0} the subalgebra of \mathcal{U} generated by $k_{i}^{ \pm 1}$, $1 \leqslant i \leqslant m$. It is known that $\mathcal{U}=\mathcal{U}^{-} \mathcal{U}^{0} \mathcal{U}^{+}$.

The reduced form \mathcal{B} of \mathcal{U} is the \mathbb{Z}_{2}-graded associative \mathcal{F}-algebra generated by e_{i}^{\prime}, f_{i} $(1 \leqslant i \leqslant m)$ with grading given by $\operatorname{deg} e_{i}^{\prime}=\operatorname{deg} f_{i}=0(i \neq m), \operatorname{deg} e_{m}^{\prime}=\operatorname{deg} f_{m}=1$, and generating relations
$e_{i}^{\prime} f_{j}=(-1)^{a b} q^{-a_{i j}} f_{j} e_{i}^{\prime}+\delta_{i j} \quad a=\operatorname{deg} e_{i}^{\prime} \quad b=\operatorname{deg} f_{j} \quad 1 \leqslant i \quad j \leqslant m$
$e_{i}^{\prime} e_{j}^{\prime}=e_{j}^{\prime} e_{i}^{\prime}$ if $|i-j|>1$, and if $|i-j|=1, i \neq m$

$$
\begin{equation*}
\left(e_{i}^{\prime}\right)^{2} e_{j}^{\prime}-\left(q+q^{-1}\right) e_{i}^{\prime} e_{j}^{\prime} e_{i}^{\prime}+e_{j}^{\prime}\left(e_{i}^{\prime}\right)^{2}=0 \tag{2.12}
\end{equation*}
$$

$f_{i} f_{j}=f_{j} f_{i}$ if $|i-j|>1$, and if $|i-j|=1, i \neq m$

$$
\begin{align*}
& f_{i}^{2} f_{j}-\left(q+q^{-1}\right) f_{i} f_{j} f_{i}+f_{j} f_{i}^{2}=0 \tag{2.13}\\
& \left(e_{m}^{\prime}\right)^{2}=0 \quad f_{m}^{2}=0 \tag{2.14}
\end{align*}
$$

The following lemma is proved in $[\mathrm{Z} 1, \mathrm{Z} 2]$.
Lemma 2.1. For any homogeneous element $y \in \mathcal{U}^{-}$of \mathbb{Z}_{2}-grading b and any $1 \leqslant i \leqslant m$, there are unique y_{i} and y_{i}^{\prime} in \mathcal{U}^{-}such that

$$
\begin{equation*}
e_{i} y-(-1)^{a b} y e_{i}=\frac{k_{i} y_{i}-y_{i}^{\prime} k_{i}^{-1}}{q-q^{-1}} \tag{2.15}
\end{equation*}
$$

where $a=\operatorname{deg} e_{i}$.
Thus we can define endomorphisms $e_{i}^{\prime}: \mathcal{U}^{-} \rightarrow \mathcal{U}^{-}, 1 \leqslant i \leqslant m$, by

$$
\begin{equation*}
e_{i}^{\prime}(y)=k_{i} y_{i}^{\prime} k_{i}^{-1} \tag{2.16}
\end{equation*}
$$

where y_{i}^{\prime} is given by lemma 2.1. If we also view $f_{i}, 1 \leqslant i \leqslant m$, as endomorphisms of \mathcal{U}^{-}, then e_{i}^{\prime} and f_{i} satisfy the defining relations of \mathcal{B}.
Lemma 2.2. For any e_{i}^{\prime} (considered as an endomorphism of \mathcal{U}^{-}), we have

$$
\begin{equation*}
e_{i}^{\prime}\left(u_{1} u_{2}\right)=e_{i}^{\prime}\left(u_{1}\right) u_{2}+(-1)^{a b} k_{i} u_{1} k_{i}^{-1} e_{i}^{\prime}\left(u_{2}\right) \tag{2.17}
\end{equation*}
$$

where $u_{1}, u_{2} \in \mathcal{U}^{-}$are homogeneous elements, $a=\operatorname{deg}\left(e_{i}^{\prime}\right)$, and $b=\operatorname{deg}\left(u_{1}\right)$.
Proof. Use lemma 2.1 and the definition of e_{i}^{\prime}.
By using arguments similar to those in the proofs of lemmas 3.4.2 and 3.4.3 of [Kas2], we can prove the following lemma.
Lemma 2.3. The algebra \mathcal{U}^{-}is a left \mathcal{B}-module and

$$
\mathcal{U}^{-} \cong \mathcal{B} / \sum_{i=1}^{m} \mathcal{B} e_{i}^{\prime}
$$

We need to construct some root vectors of \mathcal{U}. As in [Kac1, 2.5.4], we use linear functions $\epsilon_{i}(1 \leqslant i \leqslant m)$ and δ_{1} to express the roots of $G=\operatorname{sl}(m, 1)$ and choose

$$
\left\{\alpha_{i}=\epsilon_{i}-\epsilon_{i+1}, 1 \leqslant i \leqslant m-1 ; \beta_{m}=\epsilon_{m}-\delta_{1}\right\}
$$

as a simple root system. Let $\beta_{i}=\epsilon_{i}-\delta_{1}, 1 \leqslant i \leqslant m$. Then the set of odd roots of G is $\left\{ \pm \beta_{i}: 1 \leqslant i \leqslant m\right\}$. Let

$$
Q^{-}=\sum_{i=1}^{m-1} a_{i} \alpha_{i}+a_{m} \beta_{m} \quad a_{i} \in\{0,1,2,3, \ldots\} \quad 1 \leqslant i \leqslant m
$$

Then we have the usual weight subspaces decomposition

$$
\mathcal{U}^{-}=\sum_{\lambda \in Q^{-}} \mathcal{U}_{\lambda}^{-} .
$$

Recall that for a quantized enveloping algebra U of a Lie superalgebra with comultiplication Δ and antipode S, the adjoint action is defined by

$$
\begin{equation*}
a d_{q} x(y)=\sum(-1)^{\operatorname{deg}(a) \operatorname{deg}(y)} \text { ayS(b) } \tag{2.18}
\end{equation*}
$$

where x and y are homogeneous elements of U and $\Delta x=\Sigma a \otimes b$. It is easy to verify that the \mathbb{C}-linear map $\theta: \mathcal{U} \rightarrow \mathcal{U}$ defined by

$$
\begin{equation*}
\theta e_{i}=f_{i} \quad \theta f_{i}=e_{i} \quad \theta k_{i}=k_{i}^{-1} \quad \theta q=q^{-1} \tag{2.19}
\end{equation*}
$$

and $\theta(u v)=\theta(v) \theta(u), u, v \in \mathcal{U}$, is a \mathbb{C}-algebra anti-automorphism of \mathcal{U}.
Now we use $\left(\Delta_{+}, S_{+}\right)$and $\left(\Delta_{-}, S_{-}\right)$to construct two sets of odd root vectors of \mathcal{U}, respectively.

Define the following root vectors of \mathcal{U}^{-}:

$$
\begin{align*}
& f_{\beta_{m}}=f_{m} \\
& f_{\beta_{m-1}}=q^{-1} f_{m} f_{m-1}-f_{m-1} f_{m} \\
& f_{\beta_{m-2}}=q^{-1} f_{\beta_{m-1}} f_{m-2}-f_{m-2} f_{\beta_{m-1}} \tag{2.20}\\
& \ldots \\
& f_{\beta_{1}}=q^{-1} f_{\beta_{2}} f_{1}-f_{1} f_{\beta_{2}} .
\end{align*}
$$

Note that if we set $\theta\left(f_{\beta_{i}}\right)=e_{\beta_{i}}, 1 \leqslant i \leqslant m$, then we have

$$
\begin{equation*}
e_{\beta_{m-i}}=\operatorname{qad}_{q} e_{m-i}\left(e_{\beta_{m-i+1}}\right) \quad 1 \leqslant i \leqslant m-1 \tag{2.21}
\end{equation*}
$$

with the adjoint action corresponding to $\left(\Delta_{+}, S_{+}\right)$.
By using (Δ_{-}, S_{-}), we define a different set of negative odd root vectors $f_{\beta_{i}}^{-}, 1 \leqslant i \leqslant m$, as the following:

$$
\begin{equation*}
f_{\beta_{m}}^{-}=f_{m} \quad f_{\beta_{m-1}}^{-}=a d_{q} f_{m-1}\left(f_{m}\right) \quad \ldots \quad f_{\beta_{1}}^{-}=a d_{q} f_{1}\left(f_{\beta_{2}}^{-}\right) \tag{2.22}
\end{equation*}
$$

Note that by definition,

$$
\begin{equation*}
f_{\beta_{i}}^{-}=f_{i} f_{\beta_{i+1}}^{-}-q f_{\beta_{i+1}}^{-} f_{i} \quad 1 \leqslant i \leqslant m-1 . \tag{2.23}
\end{equation*}
$$

3. Lower case crystal base

We have the following lemma.
Lemma 3.1. For $1 \leqslant i \leqslant m-1$, we have

$$
e_{i}^{\prime}\left(f_{\beta_{i_{1}}}^{-} f_{\beta_{i_{2}}}^{-} \cdots f_{\beta_{i_{k}}}^{-}\right)=0 \quad 1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant m \quad 1 \leqslant k \leqslant m
$$

Proof. Since e_{i} commutes with 1, by the definition of e_{i}^{\prime} we have $e_{i}^{\prime}(1)=0$. By (2.3) and (2.15) we have

$$
\begin{equation*}
e_{i}^{\prime}\left(f_{j}\right)=\delta_{i j} \quad 1 \leqslant i \quad j \leqslant m \tag{3.1}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
e_{i}^{\prime}\left(f_{\beta_{j}}^{-}\right)=0 \quad 1 \leqslant i \leqslant m-1 \quad 1 \leqslant j \leqslant m \tag{3.2}
\end{equation*}
$$

In fact, by (2.3), (2.17) and (3.1) we have $e_{i}^{\prime}\left(f_{\beta_{j}}^{-}\right)=0$ for $j>i$, hence use (2.23), we have

$$
\begin{aligned}
e_{i}^{\prime}\left(f_{\beta_{i}}^{-}\right) & =e_{i}^{\prime}\left(f_{i}\right) f_{\beta_{i+1}}^{-}-q k_{i} f_{\beta_{i+1}}^{-} k_{i}^{-1} e_{i}^{\prime}\left(f_{i}\right) \\
& =f_{\beta_{i+1}}^{-}-q q^{-1} f_{\beta_{i+1}}^{-} \\
& =0
\end{aligned}
$$

By using induction on k and (2.17), it is clear that $e_{i}^{\prime}\left(f_{\beta_{i-k}}^{-}\right)=0,0<k<i$, and therefore (3.2) follows. Now (2.17) and (3.2) imply the desired result.

Let

$$
X^{-}=\left\{f_{\beta_{i_{1}}}^{-} f_{\beta_{i_{2}}}^{-} \cdots f_{\beta_{i_{k}}}^{-}: 1 \leqslant k \leqslant m, 1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant m\right\} \bigcup\{1\} .
$$

For $1 \leqslant i \leqslant m-1$, let \tilde{f}_{i} and \tilde{e}_{i} be the operators defined in [Kas2, 3.5] and let

$$
B^{\prime}(\infty)=\left\{\tilde{f}_{i_{1}} \cdots \tilde{f}_{i_{t}} \cdot x: x \in X^{-}, 1 \leqslant i_{1}, \ldots, i_{t} \leqslant m-1\right\} .
$$

Let $\tilde{f}_{m}=f_{m}, \tilde{e}_{m}=e_{m}^{\prime}$. Let $L_{-}(\infty)$ be the \mathcal{A}-submodule of \mathcal{U}^{-}spanned by $B^{\prime}(\infty)$ and let $B_{-}(\infty)$ be the image of $B^{\prime}(\infty)$ in $L_{-}(\infty) / q L_{-}(\infty)$.

Theorem 3.2. The pair $\left(L_{-}(\infty), B_{-}(\infty)\right)$ has the following properties:
(a) $L_{-}(\infty)$ is a free \mathcal{A}-module and it generates \mathcal{U}^{-}as a vector space over \mathcal{F}.
(b) $L_{-}(\infty)=\oplus_{\lambda \in Q^{-}} L_{-}(\infty)_{\lambda}$, where $L_{-}(\infty)_{\lambda}=L_{-}(\infty) \cap \mathcal{U}_{\lambda}^{-}$.
(c) $\tilde{e}_{i} L_{-}(\infty) \subseteq L_{-}(\infty)$ for $1 \leqslant i \leqslant m$ and $\tilde{f}_{i} L_{-}(\infty) \subseteq L_{-}(\infty)$ for $1 \leqslant i \leqslant m-1$.
(d) $B_{-}(\infty)=\cup_{\lambda \in Q^{-}} B_{-}(\infty)_{\lambda}$ is a basis of the vector space $L_{-}(\infty) / q L_{-}(\infty)$ over \mathbb{C}, where $B_{-}(\infty)_{\lambda}=B_{-}(\infty) \cap\left(L_{-}(\infty)_{\lambda} / q L_{-}(\infty)_{\lambda}\right)$.
(e) $\tilde{e}_{i} B_{-}(\infty) \subseteq B_{-}(\infty) \cup(0)$ for $1 \leqslant i \leqslant m$ and $\tilde{f}_{i} B_{-}(\infty) \subseteq B_{-}(\infty) \cup(0)$ for $1 \leqslant i \leqslant m-1$.
(f) For any $1 \leqslant i \leqslant m-1$ and $b, b^{\prime} \in B_{-}(\infty) . b=\tilde{e}_{i} b^{\prime} \Leftrightarrow b^{\prime}=\tilde{f}_{i} b$.

Proof. Except for the statements that $\tilde{e}_{m} L_{-}(\infty) \subseteq L_{-}(\infty)$ and $\tilde{e}_{m} B_{-}(\infty) \subseteq B_{-}(\infty) \cup(0)$, all assertions follow from [Kas2, 3.5]. Note that $\tilde{e}_{m} \tilde{f}_{i}=\tilde{f}_{i} \tilde{e}_{m}$ for $i<m$, so it is clear that we only need to check (recall that $\tilde{e}_{m} \cdot 1=0$)

$$
\tilde{e}_{m}\left(f_{\beta_{i_{1}}}^{-} f_{\beta_{i_{2}}}^{-} \cdots f_{\beta_{i_{k}}}^{-}\right) \quad 1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant m \quad 1 \leqslant k \leqslant m .
$$

We use induction on k, first consider $\tilde{e}_{m}\left(f_{\beta_{i}}^{-}\right)$. For $i=m, \tilde{e}_{m}\left(f_{\beta_{m}}^{-}\right)=1$. We claim that $\tilde{e}_{m}\left(f_{\beta_{i}}^{-}\right)=0$ for $i<m$. In fact, if $i=m-1$, by (2.17) and (3.1) we have

$$
\begin{aligned}
\tilde{e}_{m}\left(f_{\beta_{m-1}}^{-}\right) & =e_{m}^{\prime}\left(f_{\beta_{m-1}}^{-}\right) \\
& =e_{m}^{\prime}\left(f_{m-1} f_{m}-q f_{m} f_{m-1}\right) \\
& =e_{m}^{\prime}\left(f_{m-1}\right) f_{m}+q f_{m-1} e_{m}^{\prime}\left(f_{m}\right)-q\left(e_{m}^{\prime}\left(f_{m}\right) f_{m-1}-f_{m} e_{m}^{\prime}\left(f_{m-1}\right)\right) \\
& =0 .
\end{aligned}
$$

Assuming $\tilde{e}_{m}\left(f_{\beta_{i}}^{-}\right)=0$, then again by (2.17) and (3.1) we have

$$
\tilde{e}_{m}\left(f_{\beta_{i-1}}^{-}\right)=\tilde{e}_{m}\left(f_{i-1} f_{\beta_{i}}^{-}-q f_{\beta_{i}}^{-} f_{i-1}\right)=0
$$

Hence by (2.17) and induction on k,

$$
\tilde{e}_{m}\left(f_{\beta_{i_{1}}}^{-} f_{\beta_{i_{2}}}^{-} \cdots f_{\beta_{i_{k}}}^{-}\right)= \begin{cases}0 & i_{k}<m \\ (-1)^{k-1} q^{k-1} f_{\beta_{i_{1}}}^{-} f_{\beta_{i_{2}}}^{-} \cdots f_{\beta_{i_{k-1}}}^{-} & i_{k}=m\end{cases}
$$

Therefore,

$$
\tilde{e}_{m}\left(f_{\beta_{i_{1}}}^{-} f_{\beta_{i_{2}}}^{-} \cdots f_{\beta_{i_{k}}}^{-}\right) \in L_{-}(\infty)
$$

and

$$
\tilde{e}_{m}\left(f_{\beta_{i_{1}}}^{-} f_{\beta_{i_{2}}}^{-} \cdots f_{\beta_{i_{k}}}^{-}\right)=0 \quad\left(\bmod q L_{-}(\infty)\right)
$$

which proves the statements about \tilde{e}_{m}.
Remark. Since $f_{m} f_{m-1}=q^{-1} f_{m-1} f_{m}-q^{-1} f_{\beta_{m-1}}, \tilde{f}_{m}\left(L_{-}(\infty)\right)$ is not included in $L_{-}(\infty)$.

4. Upper case crystal base

Similar to the proof of lemma 3.1 we can prove the following lemma.
Lemma 4.1. For $1 \leqslant i \leqslant m-1$, we have

$$
e_{i}^{\prime}\left(f_{\beta_{i_{1}}} f_{\beta_{i_{2}}} \cdots f_{\beta_{i_{k}}}\right)=0 \quad 1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant m \quad 1 \leqslant k \leqslant m
$$

Let

$$
X=\left\{f_{\beta_{i_{1}}} f_{\beta_{i_{2}}} \cdots f_{\beta_{i_{k}}}: 1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant m, 1 \leqslant k \leqslant m\right\} \bigcup\{1\}
$$

let $\tilde{f}_{i}, \tilde{e}_{i}(1 \leqslant i \leqslant m)$ be the operators defined in section 3 and let

$$
B^{\prime \prime}(\infty)=\left\{\tilde{f_{i_{1}}} \cdots \tilde{i_{i_{t}}} \cdot x: x \in X, 1 \leqslant i_{1}, \ldots, i_{t} \leqslant m-1\right\}
$$

Let $L(\infty)$ be the \mathcal{A}-submodule of \mathcal{U}^{-}spanned by $B^{\prime \prime}(\infty)$ and let $B(\infty)$ be the image of $B^{\prime \prime}(\infty)$ in $L(\infty) / q L(\infty)$.

Theorem 4.2. The pair $(L(\infty), B(\infty))$ has the following properties:
(a) $L(\infty)$ is a free \mathcal{A}-module and it generates \mathcal{U}^{-}as a vector space over \mathcal{F}.
(b) $L(\infty)=\oplus_{\lambda \in Q^{-}} L(\infty)_{\lambda}$, where $L(\infty)_{\lambda}=L(\infty) \cap \mathcal{U}_{\lambda}^{-}$.
(c) $\tilde{f}_{i} L(\infty) \subseteq L(\infty)$ for $1 \leqslant i \leqslant m$ and $\tilde{e}_{i} L(\infty) \subseteq L(\infty)$ for $1 \leqslant i \leqslant m-1$.
(d) $B(\infty)=\cup_{\lambda \in Q^{-}} B(\infty)_{\lambda}$ is a basis of the vector space $L(\infty) / q L(\infty)$ over \mathbb{C}, where $B(\infty)_{\lambda}=B(\infty) \cap\left(L(\infty)_{\lambda} / q L(\infty)_{\lambda}\right)$.
(e) $\tilde{f}_{i} B(\infty) \subseteq B(\infty) \cup(0)$ for $1 \leqslant i \leqslant m$ and $\tilde{e}_{i} B(\infty) \subseteq B(\infty) \cup(0)$ for $1 \leqslant i \leqslant m-1$.
(f) For any $1 \leqslant i \leqslant m-1$ and $b, b^{\prime} \in B_{-}(\infty), b=\tilde{e}_{i} b^{\prime} \Leftrightarrow b^{\prime}=\tilde{f}_{i} b$.

It is clear that we only need to prove $\tilde{f}_{m} L(\infty) \subseteq L(\infty)$ and $\tilde{f}_{m} B(\infty) \subseteq B(\infty) \cup(0)$. In order to do that, we need some commutation formulae which we will state as lemmas.

Lemma 4.3. For $i<m, f_{m} f_{\beta_{i}}=-q f_{\beta_{i}} f_{m}$.
Proof. We let $i=m-k$, and use induction on k. For $k=1$, use $f_{m}^{2}=0$, we have

$$
\begin{aligned}
f_{m} f_{\beta_{m-1}} & =f_{m}\left(q^{-1} f_{m} f_{m-1}-f_{m-1} f_{m}\right)=-f_{m} f_{m-1} f_{m} \\
& =-q\left(q^{-1} f_{m} f_{m-1}-f_{m-1} f_{m}\right) f_{m}=-q f_{\beta_{m-1}} f_{m}
\end{aligned}
$$

Assume the formula is true for $k \geqslant 1$, since $f_{m} f_{m-k-1}=f_{m-k-1} f_{m}$, we have

$$
\begin{aligned}
f_{m} f_{\beta_{m-(k+1)}} & =f_{m}\left(q^{-1} f_{\beta_{m-k}} f_{m-k-1}-f_{m-k-1} f_{\beta_{m-k}}\right) \\
& =-f_{\beta_{m-k}} f_{m-k-1} f_{m}+q f_{m-k-1} f_{\beta_{m-k}} f_{m} \\
& =-q f_{\beta_{m-(k+1)}} f_{m} .
\end{aligned}
$$

Thus the lemma follows.
Lemma 4.3 implies that for $1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant m$,

$$
\begin{equation*}
f_{m} f_{\beta_{i_{1}}} f_{\beta_{i_{2}}} \cdots f_{\beta_{i_{k}}}=(-1)^{k} q^{k} f_{\beta_{i_{1}}} f_{\beta_{i_{2}}} \cdots f_{\beta_{i_{k}}} f_{m} . \tag{4.1}
\end{equation*}
$$

Lemma 4.4. For $0 \leqslant i \leqslant m-1$, we have

$$
\begin{equation*}
f_{m-i-1}^{2} f_{\beta_{m-i}}-\left(q+q^{-1}\right) f_{m-i-1} f_{\beta_{m-i}} f_{m-i-1}+f_{\beta_{m-i}} f_{m-i-1}^{2}=0 \tag{4.2}
\end{equation*}
$$

Proof. For $i=0$, the formula is just one of the defining relation of \mathcal{U}. For $i>0$, we have

$$
\begin{aligned}
f_{m-i-1}^{2} f_{\beta_{m-i}}= & f_{m-i-1}^{2}\left(q^{-1} f_{\beta_{m-i+1}} f_{m-i}-f_{m-i} f_{\beta_{m-i+1}}\right) \\
= & q^{-1} f_{\beta_{m-i+1}} f_{m-i-1}^{2} f_{m-i}-f_{m-i-1}^{2} f_{m-i} f_{\beta_{m-i+1}} \\
= & q^{-1} f_{\beta_{m-i+1}}\left(\left(q+q^{-1}\right) f_{m-i-1} f_{m-i} f_{m-i-1}-f_{m-i} f_{m-i-1}^{2}\right) \\
& -\left(\left(q+q^{-1}\right) f_{m-i-1} f_{m-i} f_{m-i-1}-f_{m-i} f_{m-i-1}^{2}\right) f_{\beta_{m-i+1}} \\
= & q^{-1}\left(q+q^{-1}\right) f_{m-i-1} f_{\beta_{m-i+1}} f_{m-i} f_{m-i-1}-q^{-1} f_{\beta_{m-i+1}} f_{m-i} f_{m-i-1}^{2} \\
& -\left(q+q^{-1}\right) f_{m-i-1} f_{m-i} f_{\beta_{m-i+1}} f_{m-i-1}+f_{m-i} f_{\beta_{m-i+1}} f_{m-i-1}^{2} \\
= & \left(q+q^{-1}\right) f_{m-i-1} f_{\beta_{m-i}} f_{m-i-1}-f_{\beta_{m-i}} f_{m-i-1}^{2} .
\end{aligned}
$$

Thus (4.2) follows.
Formula (4.2) implies

$$
\begin{equation*}
f_{m-i} f_{\beta_{m-i}}=q f_{\beta_{m-i}} f_{m-i} \quad 0 \leqslant i \leqslant m-1 . \tag{4.3}
\end{equation*}
$$

Lemma 4.5. For $0 \leqslant i \leqslant m-1$, we have

$$
\begin{equation*}
f_{\beta_{m-i}}^{2}=0 \tag{4.4}
\end{equation*}
$$

Proof. We use induction on i. The case $i=0$ follows from (2.6). Assume $f_{\beta_{m-i}}^{2}=0$, then a simple computation shows

$$
\begin{equation*}
f_{\beta_{m-i}} f_{\beta_{m-i-1}}=-q f_{\beta_{m-i-1}} f_{\beta_{m-i}} . \tag{4.5}
\end{equation*}
$$

Thus

$$
\begin{aligned}
f_{\beta_{m-i-1}}^{2} & =\left(q^{-1} f_{\beta_{m-i}} f_{m-i-1}-f_{m-i-1} f_{\beta_{m-i}}\right) f_{\beta_{m-i-1}} \\
& =-q f_{\beta_{m-i-1}} f_{\beta_{m-i}} f_{m-i-1}+q^{2} f_{\beta_{m-i-1}} f_{m-i-1} f_{\beta_{m-i}}
\end{aligned}
$$

(by (4.3), (4.5))

$$
=-q^{2} f_{\beta_{m-i-1}}^{2} .
$$

Therefore, by our assumption on q, the desired formula follows.
Lemma 4.6. For $0 \leqslant i<j \leqslant m-1$, we have

$$
\begin{equation*}
f_{\beta_{m-i}} f_{\beta_{m-j}}=-q f_{\beta_{m-j}} f_{\beta_{m-i}} . \tag{4.6}
\end{equation*}
$$

Proof. Note that the case $i=0$ is just lemma 4.3, and by (4.5) the formula is true for $j=i+1$. Assume it is true for $j=i+k$ with $k \geqslant 1$. Then since $f_{\beta_{m-i}} f_{m-i-k-1}=f_{m-i-k-1} f_{\beta_{m-i}}$, we have

$$
\begin{aligned}
f_{\beta_{m-i}} f_{\beta_{m-i-k-1}} & =f_{\beta_{m-i}}\left(q^{-1} f_{\beta_{m-i-k}} f_{m-i-k-1}-f_{m-i-k-1} f_{\beta_{m-i-k}}\right) \\
& =-q\left(q^{-1} f_{\beta_{m-i-k}} f_{m-i-k-1}-f_{m-i-k-1} f_{\beta_{m-i-k}}\right) f_{\beta_{m-i}} \\
& =-q f_{\beta_{m-i-k-1}} f_{\beta_{m-i}} .
\end{aligned}
$$

Hence the desired formula follows.
Lemma 4.7. For $0 \leqslant i<m-1$, we have

$$
\begin{equation*}
f_{\beta_{m-i}} f_{m-i-1}^{(k)}=q f_{m-i-1}^{(k-1)} f_{\beta_{m-i-1}}+q^{k} f_{m-i-1}^{(k)} f_{\beta_{m-i}} \tag{4.7}
\end{equation*}
$$

where $f_{j}^{(k)}=f_{j}^{k} /[k]$!.
Proof. We use induction on k. We distinguish between two cases: $i=0$ and $i>0$. The case where $i=0$ is straightforward, we give the proof for the case where $i>0$. For $k=1$, the desired formula follows from the definition of $f_{\beta_{m-i-1}}($ see (2.20)). Assume the formula holds for $k-1$, then

$$
\begin{aligned}
f_{\beta_{m-i}} f_{m-i-1}^{(k)} & =\frac{1}{[k]} f_{\beta_{m-i}} f_{m-i-1}^{(k-1)} f_{m-i-1} \\
& =\frac{1}{[k]}\left(q f_{m-i-1}^{(k-2)} f_{\beta_{m-i-1}}+q^{k-1} f_{m-i-1}^{(k-1)} f_{\beta_{m-i}}\right) f_{m-i-1} \\
& =\frac{1}{[k]} f_{m-i-1}^{(k-2)} f_{m-i-1} f_{\beta_{m-i-1}}+\frac{1}{[k]} q^{k-1} f_{m-i-1}^{(k-1)}\left(q f_{\beta_{m-i-1}}+q f_{m-i-1} f_{\beta_{m-i}}\right)
\end{aligned}
$$

(by (4.3))

$$
\begin{aligned}
& =\frac{1}{[k]}\left(f_{m-i-1}^{(k-2)} f_{m-i-1}+q^{k} f_{m-i-1}^{(k-1)}\right) f_{\beta_{m-i-1}}+q^{k} f_{m-i-1}^{(k)} f_{\beta_{m-i}} \\
& =\frac{1}{[k]}\left([k-1]+q^{k}\right) f_{m-i-1}^{(k-1)} f_{\beta_{m-i-1}}+q^{k} f_{m-i-1}^{(k)} f_{\beta_{m-i}} \\
& =q f_{m-i-1}^{(k-1)} f_{\beta_{m-i-1}}+q^{k} f_{m-i-1}^{(k)} f_{\beta_{m-i}}
\end{aligned}
$$

and the formula follows.

Lemma 4.8. For $0 \leqslant i, j \leqslant m-1$, we have

$$
f_{\beta_{m-i}} f_{m-j}= \begin{cases}f_{m-j} f_{\beta_{m-i}} & j \neq i \quad i+1 \tag{4.8}\\ q^{-1} f_{m-i} f_{\beta_{m-i}} & j=i \\ q f_{\beta_{m-i-1}}+q f_{m-i-1} f_{\beta_{m-i}} & j=i+1\end{cases}
$$

Proof. The case $j=i$ is just (4.3), and the case $j=i+1$ follows from (2.20), so we only need to prove the case $j \neq i, i+1$.

Assume $j \neq i, i+1$. The formula clearly holds if $j>i$. To treat the case $j<i$, we let $j=i-k$ and use induction on k. For $k=1$, we have

$$
\begin{aligned}
f_{\beta_{m-i}} f_{m-i+1}= & \left(q^{-1} f_{\beta_{m-i+1}} f_{m-i}-f_{m-i} f_{\beta_{m-i+1}}\right) f_{m-i+1} \\
= & q^{-1}\left(q^{-1} f_{\beta_{m-i+2}} f_{m-i+1}-f_{m-i+1} f_{\beta_{m-i+2}}\right) f_{m-i} f_{m-i+1}-f_{m-i} f_{\beta_{m-i+1}} f_{m-i+1} \\
= & q^{-2} f_{\beta_{m-i+2}} f_{m-i+1} f_{m-i} f_{m-i+1}-q^{-1} f_{m-i+1} f_{\beta_{m-i+2}} f_{m-i} f_{m-i+1} \\
& -q^{-1} f_{m-i} f_{m-i+1} f_{\beta_{m-i+1}} \quad \text { (by (4.3)). }
\end{aligned}
$$

The first term at the last step is equal to

$$
\begin{aligned}
& \frac{q^{-2}}{q+q^{-1}} f_{\beta_{m-i+2}}\left(f_{m-i+1}^{2} f_{m-i}+f_{m-i} f_{m-i+1}^{2}\right) \\
&= \frac{q^{-2}}{q+q^{-1}}\left(q f_{\beta_{m-i+1}}+q f_{m-i+1} f_{\beta_{m-i+2}}\right) f_{m-i+1} f_{m-i} \\
&+\frac{q^{-2}}{q+q^{-1}}\left(q f_{\beta_{m-i+1}}+q f_{m-i+1} f_{\beta_{m-i+2}}\right) f_{m-i+1} \\
&= \frac{q^{-2}}{q+q^{-1}} f_{m-i+1} f_{\beta_{m-i+1}} f_{m-i} \\
&+\frac{1}{q+q^{-1}} f_{m-i+1}\left(f_{\beta_{m-i+1}}+f_{m-i+1} f_{\beta_{m-i+2}}\right) f_{m-i} \\
&+\frac{q^{-2}}{q+q^{-1}} f_{m-i} f_{m-i+1} f_{\beta_{m-i+1}} \\
&+\frac{1}{q+q^{-1}} f_{m-i} f_{m-i+1}\left(f_{\beta_{m-i+1}}+f_{m-i+1} f_{\beta_{m-i+2}}\right) \\
&= f_{m-i+1}\left(f_{\beta_{m-i}}+f_{m-i} f_{\beta_{m-i+1}}\right)+\frac{1}{q+q^{-1}} f_{m-i+1}^{2} f_{m-i} f_{\beta_{m-i+2}} \\
&+q^{-1} f_{m-i} f_{m-i+1} f_{\beta_{m-i+1}}+\frac{1}{q+q^{-1}} f_{m-i} f_{m-i+1}^{2} f_{\beta_{m-i+2}}
\end{aligned}
$$

and the second term is equal to

$$
\begin{aligned}
& -f_{m-i+1} f_{m-i}\left(f_{\beta_{m-i+1}}+f_{m-i+1} f_{\beta_{m-i+2}}\right) \\
& \quad=-f_{m-i+1} f_{m-i} f_{\beta_{m-i+1}}-f_{m-i+1} f_{m-i} f_{m-i+1} f_{\beta_{m-i+2}}
\end{aligned}
$$

hence

$$
f_{\beta_{m-i}} f_{m-i+1}=f_{m-i+1} f_{\beta_{m-i}}
$$

Suppose the desired formula holds for $k-1 \geqslant 1$, then by what we have proved,

$$
\begin{aligned}
f_{\beta_{m-i}} f_{m-i+k} & =\left(q^{-1} f_{\beta_{m-i+1}} f_{m-i}-f_{m-i} f_{\beta_{m-i+1}}\right) f_{m-i+k} \\
& =f_{m-i+k}\left(q^{-1} f_{\beta_{m-i+1}} f_{m-i}-f_{m-i} f_{\beta_{m-i+1}}\right) \\
& =f_{m-i+k} f_{\beta_{m-i}}
\end{aligned}
$$

so the lemma follows.
Proof of theorem 4.2 To prove $\tilde{f}_{m} L(\infty) \subseteq L(\infty)$ and $\tilde{f}_{m} B(\infty) \subseteq B(\infty) \cup(0)$, we consider a typical element of the form

$$
\tilde{f}_{i_{1}} \cdots \tilde{f}_{i_{r}} f_{\beta_{j_{1}}} \cdots f_{\beta_{j_{s}}} \cdot 1
$$

and use induction on r. For $r=0$, formula (4.1) implies that

$$
\tilde{f}_{m} f_{\beta_{j_{1}}} \cdots f_{\beta_{j_{s}}} \cdot 1 \in L(\infty)
$$

and

$$
\tilde{f}_{m} f_{\beta_{j_{1}}} \cdots f_{\beta_{j_{s}}} \cdot 1 \equiv 0 \quad(\bmod q L(\infty))
$$

Consider the case $r=1$. If $\tilde{f}_{i_{1}} \neq \tilde{f}_{m-1}$, then since f_{m} commutes with $f_{i_{1}}$, by the above arguments the desired result follows. If $\tilde{f}_{i_{1}}=\tilde{f}_{m-1}$, then by (4.8), we have

$$
\tilde{f}_{m} \tilde{f}_{m-1} f_{\beta_{j_{1}}} \cdots f_{\beta_{j_{s}}} \cdot 1=\left(q f_{\beta_{m-1}}+q \tilde{f}_{m-1} \tilde{f}_{m}\right) f_{\beta_{j_{1}}} \cdots f_{\beta_{j_{s}}} \cdot 1
$$

and by (4.6) we have the desired result. So let us assume that

$$
\begin{equation*}
\tilde{f}_{m} \tilde{f}_{i_{1}} \cdots \tilde{f}_{i_{r}} f_{\beta_{j_{1}}} \cdots f_{\beta_{j_{s}}} \cdot 1 \in \boldsymbol{B}(\infty) \cup(0) \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
q^{i} f_{\beta_{m-i}}{\tilde{k_{1}}}_{\left.\cdots \tilde{f}_{k_{r-i}} f_{\beta_{j_{1}}} \cdots f_{\beta_{j_{s}}} \cdot 1 \in \boldsymbol{B}(\infty) \cup(0), ~\right)} \tag{4.10}
\end{equation*}
$$

where $k_{1} \neq m-i$. The assumption $k_{1} \neq m-i$ is based on the fact that $f_{\beta_{m-i}}$ commutes with f_{m-j} for $j>i+1$ and the following formula (see formula (1) on p 253 in [Jan])

$$
\begin{equation*}
f_{i} f_{i+1}^{(k)}=q^{k} f_{i+1}^{(k)} f_{i}+f_{i+1}^{(k-1)}\left(f_{i} f_{i+1}-q f_{i+1} f_{i}\right) \tag{4.11}
\end{equation*}
$$

for $i<m-1$.
Now consider

$$
\tilde{f}_{m} \tilde{f}_{i_{1}} \cdots \tilde{f}_{i_{r+1}} f_{\beta_{j_{1}}} \cdots f_{\beta_{j_{s}}} \cdot 1
$$

Then since \tilde{f}_{m} commutes with \tilde{f}_{m-k} for $k>1$, we can assume that $i_{1}=m-1$. By formula (4.7), we can further assume that $i_{2} \neq m-1$. Since
$\tilde{f}_{m} \tilde{f}_{i_{1}} \cdots \tilde{f}_{i_{r+1}} f_{\beta_{j_{1}}} \cdots f_{\beta_{j_{s}}} \cdot 1=\left(q f_{\beta_{m-1}}+q \tilde{f}_{m-1} \tilde{f}_{m}\right) \tilde{f}_{i_{2}} \cdots \tilde{f}_{i_{r+1}} f_{\beta_{j_{1}}} \cdots f_{\beta_{j_{s}}} \cdot 1$
by our induction assumption (4.10), it is clear that we only need to consider

$$
q f_{m} \tilde{f}_{i_{2}} \cdots \tilde{f}_{i_{r+1}} f_{\beta_{j_{1}}} \cdots f_{\beta_{j_{s}}} \cdot 1
$$

and assume that $i_{2}=m-2 \neq i_{3}$ by reasons similar to those in the discussion before. Proceeding similarly, we reduce our case to the term

$$
q^{m-1} f_{\beta_{1}}{\tilde{i_{i}}}^{\cdots} \tilde{f}_{i_{r+1}} f_{\beta_{j_{1}}} \cdots f_{\beta_{j_{s}}} \cdot 1
$$

Since formula (4.11) allows us to assume $i_{m} \neq 1$, by (4.8), $f_{\beta_{1}} f_{i_{m}}=f_{i_{m}} f_{\beta_{1}}$, thus by induction assumption (4.10) the induction process goes through and the proof of theorem 4.2 has been completed.

5. Discussion

We used the reduced form of the quantized enveloping algebra \mathcal{U} of $G=\operatorname{sl}(m, 1)$ to analyse the structure of \mathcal{U}. Our result shows that some naturally constructed bases for \mathcal{U}^{-}are crystal bases for the subalgebra of \mathcal{U} corresponding to the even part of G in the sense of [Kas1]. In [Z2], these bases were shown to have the property that when applied to a highest-weight vector of a simple module (of certain type), the non-vanishing ones form a crystal base for the module (for the subalgebra corresponds to the even part of G) in the case of $\operatorname{sl}(2,1)$. Further attention should be given for the general cases.

References

[BKK] Benkart G, Kang S-J and Kashiwara M 1998 Crystal bases for the quantum superalgebra $U_{q}(\mathfrak{g l}(m, n))$ Preprint math.QA. 9810092
[Jan] Jantzen J C 1995 Lectures on Quantum Groups (Graduate Studies in Mathematics vol 6) (Providence, RI: American Mathematical Society)
[Kac1] Kac V 1977 Lie superalgebras Adv. Math. 26 8-96
[Kac2] Kac V 1977 Lie representations of classical Lie superalgebras Lecture Notes in Mathematics vol 676 (Berlin: Springer) pp 579-626
[Kas1] Kashiwara M 1990 Crystallizing the q-analogue of universal enveloping algebras Commun. Math. Phys. 133 249-60
[Kas2] Kashiwara M 1991 On crystal bases of the q-analogue of universal enveloping algebras Duke Math. J. 63 465-516
[Kas3] Kashiwara M 1993 Crystal base and Littelmann's refined Demazure character formula Duke Math. J. 71 839-58
[Kas4] Kashiwara M 1995 On crystal bases Representations of Groups, CMS Conf. Proc. vol 16 (Providence, RI: American Mathematical Society) pp 155-97
[MZ] Musson I M and Zou Y M 1998 Crystal bases for $U_{q}(\operatorname{osp}(1,2 r))$ J. Algebra 210 514-34
[Z1] Zou Y M 1997 A multi-parameter reduced deformation of $U(s l(m+n))$ Lett. Math. Phys. 42 329-35
[Z2] Zou Y M Crystal bases for $U_{q}(s l(2,1))$ Proc. Am. Math. Soc. to appear

