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Abstract. The structure of the quantized enveloping algebra of the Lie superalgebrasl(m, 1) is
studied, crystal bases for its negative part are constructed.

1. Introduction

In the application of quantized enveloping algebras of Lie algebras (or Lie superalgebras) to
two-dimensional solvable lattice models, the deformation parameterq essentially plays the
role of temperature. Atq = 0, which corresponds to absolute zero temperature, these algebras
possess certain canonical bases called crystal bases introduced by Kashiwara [Kas1]. Crystal
bases can be constructed for the quantized enveloping algebra of an arbitrary symmetrizable
Kac–Moody algebra [Kas2]. Since crystal bases bear many remarkable properties (see [Kas1–
Kas4]), there have been recent attempts to extend crystal base theory to the superalgebra case
(see [BKK, MZ, Z1]).

In [Kas2], crystal bases for the negative partU− of a quantized enveloping algebraU were
constructed. These crystal bases have the property that when they are applied to a highest-
weight vector of a simpleU-moduleV (of certain type), the non-vanishing elements form
a crystal base forV . The construction uses the action of a reduced form of the quantized
enveloping algebra. Similar reduced forms can also be defined for the superalgebra case (for
the casesl(m, n), see [Z1]). In this paper, we shall construct certain bases for the negative part
U− of the quantized enveloping algebraU of the Lie superalgebraG = sl(m, 1). Since these
bases are crystal bases in the sense of [Kas2, 3.5] for the subalgebraUq(G0)

∼= Uq(gl(m)),
whereG0 is the even part ofG, we shall also call them crystal bases. We first use the results on
the reduced versionB of U obtained in [Z1, Z2] to analyse the structure ofU− as aB-module,
then apply the result of [Kas2, 3.5] toUq(G0) to construct these bases. The construction leads
to two types of bases, which will be called the upper case crystal base and lower case crystal
base, respectively.

In [BKK], a crystal base theory was developed for the Lie superalgebragl(m, n) for
the category of modules obtained from the tensor products of the natural vector module of
gl(m, n). The crystal bases constructed in [BKK] are invariant under all Kashiwara operators
and behave well with respect to tensor products. Due to the fact that the category of finite-
dimensionalgl(m, n)-modules is not completely reducible, a canonical base forU− which is
invariant under all Kashiwara operators does not seem to be possible. Nevertheless, the result
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of the present paper shows that some naturally constructed bases ofU− are actually crystal
bases for the subalgebraUq(G0) of U .

In section 2, we will recall the definition ofU and its reduced formB, and study some
basic properties ofU . In sections 3 and 4 we will construct crystal bases forU−.

2. The algebraU and its reduced formB

As a contragredient algebra, the Lie superalgebraG = sl(m, 1) (m > 2) has them × m
defining matrix

(aij )m×m =

 Am−1

−1

−1 0


whereAm−1 is the(m− 1)× (m− 1) Cartan matrix of typeA.

To define the quantized enveloping algebraU ofG, letC be the field of complex numbers,
let q be an indeterminate overC, letA be the localization of the ringC[q] at q = 0 and let
F = C(q). The algebraU is an associativeZ2-graded algebra overF (with 1) generated byei ,
fi , k

±1
i (i = 1, . . . , m), with the grading given by deg(ei) = deg(fi) = 0 (i = 1, . . . , m− 1),

deg(k±1
i ) = 0 (i = 1, . . . , m), deg(em) = deg(fm) = 1, and the defining relations

kik
−1
i = k−1

i ki = 1 kikj = kj ki 16 i, j 6 m (2.1)

kiej k
−1
i = qaij ej kifj k

−1
i = q−aij fj 16 i, j 6 m (2.2)

eifj − (−1)deg(ei ) deg(fj )fj ei = δij ki − k
−1
i

q − q−1
16 i, j 6 m (2.3)

eiej = ej ei if |i − j | > 1, and for|i − j | = 1, i 6= m,

e2
i ej −

(
q + q−1

)
eiej ei + ej e

2
i = 0 (2.4)

fifj = fjfi if |i − j | > 1, and for|i − j | = 1, i 6= m,

f 2
i fj −

(
q + q−1

)
fifjfi + fjf

2
i = 0 (2.5)

e2
m = 0 f 2

m = 0. (2.6)

As in [Kas2, 1.4], we can define two comultiplications1± on U . The comultiplication
1+ is defined by

1+
(
k±1
i

) = k±1
i ⊗ k±1

i

1+(ei) = ei ⊗ 1 + ki ⊗ ei
1+(fi) = fi ⊗ k−1

i + 1⊗ fi 16 i 6 m
(2.7)

and the comultiplication1− is defined by

1−
(
k±1
i

) = k±1
i ⊗ k±1

i

1−(ei) = ei ⊗ k−1
i + 1⊗ ei

1−(fi) = fi ⊗ 1 + ki ⊗ fi 16 i 6 m.
(2.8)

Corresponding to1±, the antipodes ofU are defined by

S+(ki) = k−1
i S+(ei) = −k−1

i ei S+(fi) = −fiki 16 i 6 m (2.9)
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and (compare with [Jan, 9.13])

S−(ki) = k−1
i S−(ei) = −eiki S−(fi) = −k−1

i fi 16 i 6 m (2.10)

respectively.
We denote byUq(G0) the subalgebra ofU generated byk±1

i (1 6 i 6 m), ei andfi
(1 6 i 6 m − 1). SinceG0

∼= gl(m) as a Lie algebra,Uq(G0) is the usual quantized
enveloping algebra ofgl(m). We denote byU− (respectivelyU+) the subalgebra ofU generated
by fi (respectivelyei), 1 6 i 6 m, and denote byU0 the subalgebra ofU generated byk±1

i ,
16 i 6 m. It is known thatU = U−U0U+.

The reduced formB of U is theZ2-graded associativeF-algebra generated bye′i , fi
(1 6 i 6 m) with grading given by dege′i = degfi = 0 (i 6= m), dege′m = degfm = 1, and
generating relations

e′ifj = (−1)abq−aij fj e′i + δij a = dege′i b = degfj 16 i j 6 m (2.11)

e′ie
′
j = e′j e′i if |i − j | > 1, and if|i − j | = 1, i 6= m

(e′i )
2e′j −

(
q + q−1

)
e′ie
′
j e
′
i + e′j (e

′
i )

2 = 0 (2.12)

fifj = fjfi if |i − j | > 1, and if|i − j | = 1, i 6= m
f 2
i fj −

(
q + q−1

)
fifjfi + fjf

2
i = 0 (2.13)

(e′m)
2 = 0 f 2

m = 0. (2.14)

The following lemma is proved in [Z1, Z2].

Lemma 2.1. For any homogeneous elementy ∈ U− of Z2-grading b and any1 6 i 6 m,
there are uniqueyi andy ′i in U− such that

eiy − (−1)abyei = kiyi − y ′ik−1
i

q − q−1
(2.15)

wherea = degei .

Thus we can define endomorphismse′i : U− → U−, 16 i 6 m, by

e′i (y) = kiy ′ik−1
i (2.16)

wherey ′i is given by lemma 2.1. If we also viewfi , 1 6 i 6 m, as endomorphisms ofU−,
thene′i andfi satisfy the defining relations ofB.

Lemma 2.2. For anye′i (considered as an endomorphism ofU−), we have

e′i (u1u2) = e′i (u1)u2 + (−1)abkiu1k
−1
i e
′
i (u2) (2.17)

whereu1, u2 ∈ U− are homogeneous elements,a = deg(e′i ), andb = deg(u1).

Proof. Use lemma 2.1 and the definition ofe′i . �
By using arguments similar to those in the proofs of lemmas 3.4.2 and 3.4.3 of [Kas2],

we can prove the following lemma.

Lemma 2.3. The algebraU− is a leftB-module and

U− ∼= B
/ m∑

i=1

Be′i .
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We need to construct some root vectors ofU . As in [Kac1, 2.5.4], we use linear functions
εi (16 i 6 m) andδ1 to express the roots ofG = sl(m, 1) and choose{

αi = εi − εi+1, 16 i 6 m− 1;βm = εm − δ1
}

as a simple root system. Letβi = εi − δ1, 1 6 i 6 m. Then the set of odd roots ofG is
{±βi : 16 i 6 m}. Let

Q− =
m−1∑
i=1

aiαi + amβm ai ∈ {0, 1, 2, 3, . . .} 16 i 6 m.

Then we have the usual weight subspaces decomposition

U− =
∑
λ∈Q−

U−λ .

Recall that for a quantized enveloping algebraU of a Lie superalgebra with
comultiplication1 and antipodeS, the adjoint action is defined by

adqx(y) =
∑

(−1)deg(a) deg(y)ayS(b) (2.18)

wherex andy are homogeneous elements ofU and1x = 6a ⊗ b. It is easy to verify that
theC-linear mapθ : U → U defined by

θei = fi θfi = ei θki = k−1
i θq = q−1 (2.19)

andθ(uv) = θ(v) θ(u), u, v ∈ U , is aC-algebra anti-automorphism ofU .
Now we use(1+, S+) and (1−, S−) to construct two sets of odd root vectors ofU ,

respectively.
Define the following root vectors ofU−:

fβm = fm
fβm−1 = q−1fmfm−1− fm−1fm

fβm−2 = q−1fβm−1fm−2 − fm−2fβm−1

· · ·
fβ1 = q−1fβ2f1− f1fβ2.

(2.20)

Note that if we setθ(fβi ) = eβi , 16 i 6 m, then we have

eβm−i = qadqem−i
(
eβm−i+1

)
16 i 6 m− 1 (2.21)

with the adjoint action corresponding to(1+, S+).
By using(1−, S−), we define a different set of negative odd root vectorsf −βi , 16 i 6 m,

as the following:

f −βm = fm f −βm−1
= adqfm−1(fm) . . . f −β1

= adqf1
(
f −β2

)
. (2.22)

Note that by definition,

f −βi = fif −βi+1
− qf −βi+1

fi 16 i 6 m− 1. (2.23)
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3. Lower case crystal base

We have the following lemma.

Lemma 3.1. For 16 i 6 m− 1, we have

e′i
(
f −βi1f

−
βi2
· · · f −βik

) = 0 16 i1 < i2 < · · · < ik 6 m 16 k 6 m.

Proof. Sinceei commutes with 1, by the definition ofe′i we havee′i (1) = 0. By (2.3) and
(2.15) we have

e′i (fj ) = δij 16 i j 6 m. (3.1)

We claim that

e′i
(
f −βj
) = 0 16 i 6 m− 1 16 j 6 m. (3.2)

In fact, by (2.3), (2.17) and (3.1) we havee′i (f
−
βj
) = 0 for j > i, hence use (2.23), we have

e′i
(
f −βi
) = e′i (fi)f −βi+1

− qkif −βi+1
k−1
i e
′
i (fi)

= f −βi+1
− qq−1f −βi+1

= 0.

By using induction onk and (2.17), it is clear thate′i (f
−
βi−k ) = 0, 0 < k < i, and therefore

(3.2) follows. Now (2.17) and (3.2) imply the desired result. �

Let

X− = {f −βi1f −βi2 · · · f −βik : 16 k 6 m, 16 i1 < i2 < · · · < ik 6 m
}⋃{1}.

For 16 i 6 m− 1, let f̃i andẽi be the operators defined in [Kas2, 3.5] and let

B ′(∞) = {f̃i1 · · · f̃it · x : x ∈ X−, 16 i1, . . . , it 6 m− 1
}
.

Let f̃m = fm, ẽm = e′m. Let L−(∞) be theA-submodule ofU− spanned byB ′(∞) and let
B−(∞) be the image ofB ′(∞) in L−(∞)/qL−(∞).
Theorem 3.2.The pair(L−(∞), B−(∞)) has the following properties:

(a) L−(∞) is a freeA-module and it generatesU− as a vector space overF .
(b) L−(∞) = ⊕λ∈Q−L−(∞)λ, whereL−(∞)λ = L−(∞) ∩ U−λ .
(c) ẽiL−(∞) ⊆ L−(∞) for 16 i 6 m and f̃iL−(∞) ⊆ L−(∞) for 16 i 6 m− 1.
(d) B−(∞) = ∪λ∈Q−B−(∞)λ is a basis of the vector spaceL−(∞)/qL−(∞) overC, where

B−(∞)λ = B−(∞) ∩ (L−(∞)λ/qL−(∞)λ).
(e) ẽiB−(∞) ⊆ B−(∞)∪(0) for 16 i 6 mandf̃iB−(∞) ⊆ B−(∞)∪(0) for 16 i 6 m−1.
(f) For any16 i 6 m− 1 andb, b′ ∈ B−(∞). b = ẽib′ ⇔ b′ = f̃ib.

Proof. Except for the statements thatẽmL−(∞) ⊆ L−(∞) andẽmB−(∞) ⊆ B−(∞) ∪ (0),
all assertions follow from [Kas2, 3.5]. Note thatẽmf̃i = f̃i ẽm for i < m, so it is clear that we
only need to check (recall thatẽm · 1= 0)

ẽm
(
f −βi1f

−
βi2
· · · f −βik

)
16 i1 < i2 < · · · < ik 6 m 16 k 6 m.
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We use induction onk, first considerẽm(f
−
βi
). For i = m, ẽm(f

−
βm
) = 1. We claim that

ẽm(f
−
βi
) = 0 for i < m. In fact, if i = m− 1, by (2.17) and (3.1) we have

ẽm
(
f −βm−1

) = e′m(f −βm−1

)
= e′m

(
fm−1fm − qfmfm−1

)
= e′m

(
fm−1

)
fm + qfm−1e

′
m(fm)− q

(
e′m(fm)fm−1− fme′m

(
fm−1

))
= 0.

Assumingẽm(f
−
βi
) = 0, then again by (2.17) and (3.1) we have

ẽm
(
f −βi−1

) = ẽm(fi−1f
−
βi
− qf −βi fi−1

) = 0.

Hence by (2.17) and induction onk,

ẽm
(
f −βi1f

−
βi2
· · · f −βik

) = { 0 ik < m

(−1)k−1qk−1f −βi1f
−
βi2
· · · f −βik−1

ik = m.

Therefore,

ẽm
(
f −βi1f

−
βi2
· · · f −βik

) ∈ L−(∞)
and

ẽm
(
f −βi1f

−
βi2
· · · f −βik

) = 0 (mod qL−(∞))
which proves the statements aboutẽm. �

Remark. Sincefmfm−1 = q−1fm−1fm − q−1fβm−1, f̃m(L−(∞)) is not included inL−(∞).

4. Upper case crystal base

Similar to the proof of lemma 3.1 we can prove the following lemma.

Lemma 4.1. For 16 i 6 m− 1, we have

e′i
(
fβi1fβi2 · · · fβik

) = 0 16 i1 < i2 < · · · < ik 6 m 16 k 6 m.

Let

X = {fβi1fβi2 · · · fβik : 16 i1 < i2 < · · · < ik 6 m, 16 k 6 m
}⋃{1}

let f̃i , ẽi (16 i 6 m) be the operators defined in section 3 and let

B ′′(∞) = {f̃i1 · · · f̃it · x : x ∈ X, 16 i1, . . . , it 6 m− 1
}
.

LetL(∞) be theA-submodule ofU− spanned byB ′′(∞) and letB(∞) be the image ofB ′′(∞)
in L(∞)/qL(∞).
Theorem 4.2.The pair(L(∞), B(∞)) has the following properties:

(a) L(∞) is a freeA-module and it generatesU− as a vector space overF .
(b) L(∞) = ⊕λ∈Q−L(∞)λ, whereL(∞)λ = L(∞) ∩ U−λ .
(c) f̃iL(∞) ⊆ L(∞) for 16 i 6 m and ẽiL(∞) ⊆ L(∞) for 16 i 6 m− 1.
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(d) B(∞) = ∪λ∈Q−B(∞)λ is a basis of the vector spaceL(∞)/qL(∞) over C, where
B(∞)λ = B(∞) ∩ (L(∞)λ/qL(∞)λ).

(e) f̃iB(∞) ⊆ B(∞) ∪ (0) for 16 i 6 m and ẽiB(∞) ⊆ B(∞) ∪ (0) for 16 i 6 m− 1.
(f) For any16 i 6 m− 1 andb, b′ ∈ B−(∞), b = ẽib′ ⇔ b′ = f̃ib.

It is clear that we only need to provẽfmL(∞) ⊆ L(∞) andf̃mB(∞) ⊆ B(∞) ∪ (0). In
order to do that, we need some commutation formulae which we will state as lemmas.

Lemma 4.3. For i < m, fmfβi = −qfβi fm.

Proof. We leti = m− k, and use induction onk. Fork = 1, usef 2
m = 0, we have

fmfβm−1 = fm
(
q−1fmfm−1− fm−1fm

) = −fmfm−1fm

= −q(q−1fmfm−1− fm−1fm
)
fm = −qfβm−1fm.

Assume the formula is true fork > 1, sincefmfm−k−1 = fm−k−1fm, we have

fmfβm−(k+1) = fm(q−1fβm−k fm−k−1− fm−k−1fβm−k )

= −fβm−k fm−k−1fm + qfm−k−1fβm−k fm

= −qfβm−(k+1)fm.

Thus the lemma follows. �

Lemma 4.3 implies that for 16 i1 < i2 < · · · < ik 6 m,

fmfβi1fβi2 · · · fβik = (−1)kqkfβi1fβi2 · · · fβik fm. (4.1)

Lemma 4.4. For 06 i 6 m− 1, we have

f 2
m−i−1fβm−i − (q + q−1)fm−i−1fβm−i fm−i−1 + fβm−i f

2
m−i−1 = 0. (4.2)

Proof. For i = 0, the formula is just one of the defining relation ofU . For i > 0, we have

f 2
m−i−1fβm−i = f 2

m−i−1

(
q−1fβm−i+1fm−i − fm−ifβm−i+1

)
= q−1fβm−i+1f

2
m−i−1fm−i − f 2

m−i−1fm−ifβm−i+1

= q−1fβm−i+1

((
q + q−1

)
fm−i−1fm−ifm−i−1− fm−if 2

m−i−1

)
− ((q + q−1

)
fm−i−1fm−ifm−i−1− fm−if 2

m−i−1

)
fβm−i+1

= q−1
(
q + q−1

)
fm−i−1fβm−i+1fm−ifm−i−1− q−1fβm−i+1fm−if

2
m−i−1

− (q + q−1
)
fm−i−1fm−ifβm−i+1fm−i−1 + fm−ifβm−i+1f

2
m−i−1

= (q + q−1
)
fm−i−1fβm−i fm−i−1− fβm−i f 2

m−i−1.

Thus (4.2) follows. �

Formula (4.2) implies

fm−ifβm−i = qfβm−i fm−i 06 i 6 m− 1. (4.3)

Lemma 4.5. For 06 i 6 m− 1, we have

f 2
βm−i = 0. (4.4)
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Proof. We use induction oni. The casei = 0 follows from (2.6). Assumef 2
βm−i = 0, then a

simple computation shows

fβm−i fβm−i−1 = −qfβm−i−1fβm−i . (4.5)

Thus

f 2
βm−i−1

= (q−1fβm−i fm−i−1− fm−i−1fβm−i
)
fβm−i−1

= −qfβm−i−1fβm−i fm−i−1 + q2fβm−i−1fm−i−1fβm−i

(by (4.3), (4.5))

= −q2f 2
βm−i−1

.

Therefore, by our assumption onq, the desired formula follows. �

Lemma 4.6. For 06 i < j 6 m− 1, we have

fβm−i fβm−j = −qfβm−j fβm−i . (4.6)

Proof. Note that the casei = 0 is just lemma 4.3, and by (4.5) the formula is true forj = i +1.
Assume it is true forj = i + k with k > 1. Then sincefβm−i fm−i−k−1 = fm−i−k−1fβm−i , we
have

fβm−i fβm−i−k−1 = fβm−i
(
q−1fβm−i−k fm−i−k−1− fm−i−k−1fβm−i−k

)
= −q(q−1fβm−i−k fm−i−k−1− fm−i−k−1fβm−i−k

)
fβm−i

= −qfβm−i−k−1fβm−i .

Hence the desired formula follows. �

Lemma 4.7. For 06 i < m− 1, we have

fβm−i f
(k)
m−i−1 = qf (k−1)

m−i−1fβm−i−1 + qkf (k)m−i−1fβm−i (4.7)

wheref (k)j = f kj /[k]! .

Proof. We use induction onk. We distinguish between two cases:i = 0 andi > 0. The case
wherei = 0 is straightforward, we give the proof for the case wherei > 0. Fork = 1, the
desired formula follows from the definition offβm−i−1 (see (2.20)). Assume the formula holds
for k − 1, then

fβm−i f
(k)
m−i−1 =

1

[k]
fβm−i f

(k−1)
m−i−1fm−i−1

= 1

[k]

(
qf

(k−2)
m−i−1fβm−i−1 + qk−1f

(k−1)
m−i−1fβm−i

)
fm−i−1

= 1

[k]
f
(k−2)
m−i−1fm−i−1fβm−i−1 +

1

[k]
qk−1f

(k−1)
m−i−1

(
qfβm−i−1 + qfm−i−1fβm−i

)
(by (4.3))

= 1

[k]

(
f
(k−2)
m−i−1fm−i−1 + qkf (k−1)

m−i−1

)
fβm−i−1 + qkf (k)m−i−1fβm−i

= 1

[k]

(
[k − 1] + qk

)
f
(k−1)
m−i−1fβm−i−1 + qkf (k)m−i−1fβm−i

= qf (k−1)
m−i−1fβm−i−1 + qkf (k)m−i−1fβm−i

and the formula follows. �
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Lemma 4.8. For 06 i, j 6 m− 1, we have

fβm−i fm−j =


fm−j fβm−i j 6= i i + 1

q−1fm−ifβm−i j = i
qfβm−i−1 + qfm−i−1fβm−i j = i + 1.

(4.8)

Proof. The casej = i is just (4.3), and the casej = i + 1 follows from (2.20), so we only
need to prove the casej 6= i, i + 1.

Assumej 6= i, i + 1. The formula clearly holds ifj > i. To treat the casej < i, we let
j = i − k and use induction onk. Fork = 1, we have

fβm−i fm−i+1 =
(
q−1fβm−i+1fm−i − fm−ifβm−i+1

)
fm−i+1

= q−1
(
q−1fβm−i+2fm−i+1− fm−i+1fβm−i+2

)
fm−ifm−i+1− fm−ifβm−i+1fm−i+1

= q−2fβm−i+2fm−i+1fm−ifm−i+1− q−1fm−i+1fβm−i+2fm−ifm−i+1

− q−1fm−ifm−i+1fβm−i+1 (by (4.3)).

The first term at the last step is equal to

q−2

q + q−1
fβm−i+2

(
f 2
m−i+1fm−i + fm−if 2

m−i+1

)
= q−2

q + q−1

(
qfβm−i+1 + qfm−i+1fβm−i+2

)
fm−i+1fm−i

+
q−2

q + q−1

(
qfβm−i+1 + qfm−i+1fβm−i+2

)
fm−i+1

= q−2

q + q−1
fm−i+1fβm−i+1fm−i

+
1

q + q−1
fm−i+1

(
fβm−i+1 + fm−i+1fβm−i+2

)
fm−i

+
q−2

q + q−1
fm−ifm−i+1fβm−i+1

+
1

q + q−1
fm−ifm−i+1

(
fβm−i+1 + fm−i+1fβm−i+2

)
= fm−i+1

(
fβm−i + fm−ifβm−i+1

)
+

1

q + q−1
f 2
m−i+1fm−ifβm−i+2

+q−1fm−ifm−i+1fβm−i+1 +
1

q + q−1
fm−if 2

m−i+1fβm−i+2

and the second term is equal to

−fm−i+1fm−i
(
fβm−i+1 + fm−i+1fβm−i+2

)
= −fm−i+1fm−ifβm−i+1 − fm−i+1fm−ifm−i+1fβm−i+2

hence

fβm−i fm−i+1 = fm−i+1fβm−i .
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Suppose the desired formula holds fork − 1> 1, then by what we have proved,

fβm−i fm−i+k =
(
q−1fβm−i+1fm−i − fm−ifβm−i+1

)
fm−i+k

= fm−i+k
(
q−1fβm−i+1fm−i − fm−ifβm−i+1

)
= fm−i+kfβm−i

so the lemma follows. �

Proof of theorem 4.2To provef̃mL(∞) ⊆ L(∞) andf̃mB(∞) ⊆ B(∞) ∪ (0), we consider
a typical element of the form

f̃i1 · · · f̃ir fβj1 · · · fβjs · 1
and use induction onr. Forr = 0, formula (4.1) implies that

f̃mfβj1 · · · fβjs · 1 ∈ L(∞)
and

f̃mfβj1 · · · fβjs · 1≡ 0 (mod qL(∞)).
Consider the caser = 1. If f̃i1 6= f̃m−1, then sincefm commutes withfi1, by the above
arguments the desired result follows. Iff̃i1 = f̃m−1, then by (4.8), we have

f̃mf̃m−1fβj1 · · · fβjs · 1=
(
qfβm−1 + qf̃m−1f̃m

)
fβj1 · · · fβjs · 1

and by (4.6) we have the desired result. So let us assume that

f̃mf̃i1 · · · f̃ir fβj1 · · · fβjs · 1 ∈ B(∞) ∪ (0) (4.9)

and

qifβm−i f̃k1 · · · f̃kr−i fβj1 · · · fβjs · 1 ∈ B(∞) ∪ (0) (4.10)

wherek1 6= m− i. The assumptionk1 6= m− i is based on the fact thatfβm−i commutes with
fm−j for j > i + 1 and the following formula (see formula (1) on p 253 in [Jan])

fif
(k)
i+1 = qkf (k)i+1fi + f (k−1)

i+1

(
fifi+1− qfi+1fi

)
(4.11)

for i < m− 1.
Now consider

f̃mf̃i1 · · · f̃ir+1fβj1 · · · fβjs · 1.
Then sincef̃m commutes withf̃m−k for k > 1, we can assume thati1 = m − 1. By formula
(4.7), we can further assume thati2 6= m− 1. Since

f̃mf̃i1 · · · f̃ir+1fβj1 · · · fβjs · 1=
(
qfβm−1 + qf̃m−1f̃m

)
f̃i2 · · · f̃ir+1fβj1 · · · fβjs · 1

by our induction assumption (4.10), it is clear that we only need to consider

qfmf̃i2 · · · f̃ir+1fβj1 · · · fβjs · 1
and assume thati2 = m − 2 6= i3 by reasons similar to those in the discussion before.
Proceeding similarly, we reduce our case to the term

qm−1fβ1f̃im · · · f̃ir+1fβj1 · · · fβjs · 1.
Since formula (4.11) allows us to assumeim 6= 1, by (4.8),fβ1fim = fimfβ1, thus by induction
assumption (4.10) the induction process goes through and the proof of theorem 4.2 has been
completed. �
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5. Discussion

We used the reduced form of the quantized enveloping algebraU of G = sl(m, 1) to analyse
the structure ofU . Our result shows that some naturally constructed bases forU− are crystal
bases for the subalgebra ofU corresponding to the even part ofG in the sense of [Kas1]. In
[Z2], these bases were shown to have the property that when applied to a highest-weight vector
of a simple module (of certain type), the non-vanishing ones form a crystal base for the module
(for the subalgebra corresponds to the even part ofG) in the case ofsl(2, 1). Further attention
should be given for the general cases.

References

[BKK] Benkart G, Kang S-J and Kashiwara M 1998 Crystal bases for the quantum superalgebraUq(gl(m, n))

Preprint math.QA.9810092
[Jan] Jantzen J C 1995Lectures on Quantum Groups (Graduate Studies in Mathematics vol 6)(Providence, RI:

American Mathematical Society)
[Kac1] Kac V 1977 Lie superalgebrasAdv. Math.26 8–96
[Kac2] Kac V 1977 Lie representations of classical Lie superalgebrasLecture Notes in Mathematics vol 676(Berlin:

Springer) pp 579–626
[Kas1] Kashiwara M 1990 Crystallizing theq-analogue of universal enveloping algebrasCommun. Math. Phys.

133249–60
[Kas2] Kashiwara M 1991 On crystal bases of theq-analogue of universal enveloping algebrasDuke Math. J.63

465–516
[Kas3] Kashiwara M 1993 Crystal base and Littelmann’s refined Demazure character formulaDuke Math. J.71

839–58
[Kas4] Kashiwara M 1995 On crystal basesRepresentations of Groups, CMS Conf. Proc. vol 16(Providence, RI:

American Mathematical Society) pp 155–97
[MZ] Musson I M and Zou Y M 1998 Crystal bases forUq(osp(1, 2r)) J. Algebra210514–34
[Z1] Zou Y M 1997 A multi-parameter reduced deformation ofU(sl(m + n)) Lett. Math. Phys.42329–35
[Z2] Zou Y M Crystal bases forUq(sl(2, 1)) Proc. Am. Math. Soc.to appear


